9号彩票代理

文字
缩放
增大字体
减小字体
陕西师范大学 舒洪英教授:Dirichlet problem for a delayed diffusive hematopoiesis model

([西财新闻] 发布于 :2018-06-12 )

光华讲坛——社会名流与企业家论坛第5004

 

题:Dirichlet problem for a delayed diffusive hematopoiesis model

主讲人陕西师范大学 舒洪英教授

主持人:经济数学学院 马敬堂教授

间:2018614日(星期四)16:00-17:00

点:西南财经大学柳林校区通博楼B412

主办单位:经济数学学院  科研处


主讲人简介:

舒洪英,2010年获哈尔滨工业大学博士学位。2008年在加拿大阿尔伯塔大学留学近两年,2011年至2014年分别在加拿大新不伦瑞克大学,加拿大瑞尔森大学任博士后研究员。2014年至2017年任职同济大学特聘研究员,博士生导师。现任职于陕西师范大学特聘教授,博士生导师。2011年获加拿大AARMS博士后基金,2016年获上海市浦江人才计划,2017年获陕西省百人计划特聘教授。主要研究微分动力系统及生物数学方面的应用,已发表SCI收录论文20余篇,其中有5ESI高被引论文,分别发表在Journal of Differential Equations, SIAM Journal of Applied Mathematics, Nonlinearity, Journal of Dynamics and Differential Equations, Journal of Mathematical BiologyBulletin of Mathematical Biology, JMAA, DCDS上。

内容提要:

In this talk, we study the dynamics of a delayed diffusive hematopoiesis model with two types of Dirichlet boundary conditions. For the model with a zero Dirichlet boundary condition, we establish global stability of the trivial equilibrium under certain conditions, and use the phase plane method to prove the existence and uniqueness of a positive spatially heterogeneous steady state. We further obtain delay-independent as well as delay-dependent conditions for the local stability of this steady state. For the model with a non-zero Dirichlet boundary condition, we show that the only positive steady state is a constant solution. Results for the local stability of the constant solution are also provided. By using the delay as a bifurcation parameter, we show that the model has infinite number of Hopf bifurcation values and the global Hopf branches bifurcated from these values are unbounded, which indicates the global existence of periodic solutions.

☆该新闻已被浏览: 次★

打印本文】 【关闭窗口



友情链接:9号彩票  9号彩票  创元彩票  幸运飞艇  丰亿彩票